Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38339180

RESUMO

To investigate the mechanism of aquatic pathogens in quorum sensing (QS) and decode the signal transmission of aquatic Gram-negative pathogens, this paper proposes a novel method for the intelligent matching identification of eight quorum signaling molecules (N-acyl-homoserine lactones, AHLs) with similar molecular structures, using terahertz (THz) spectroscopy combined with molecular dynamics simulation and spectral similarity calculation. The THz fingerprint absorption spectral peaks of the eight AHLs were identified, attributed, and resolved using the density functional theory (DFT) for molecular dynamics simulation. To reduce the computational complexity of matching recognition, spectra with high peak matching values with the target were preliminarily selected, based on the peak position features of AHL samples. A comprehensive similarity calculation (CSC) method using a weighted improved Jaccard similarity algorithm (IJS) and discrete Fréchet distance algorithm (DFD) is proposed to calculate the similarity between the selected spectra and the targets, as well as to return the matching result with the highest accuracy. The results show that all AHL molecular types can be correctly identified, and the average quantization accuracy of CSC is 98.48%. This study provides a theoretical and data-supported foundation for the identification of AHLs, based on THz spectroscopy, and offers a new method for the high-throughput and automatic identification of AHLs.


Assuntos
Acil-Butirolactonas , Espectroscopia Terahertz , Acil-Butirolactonas/química , Simulação de Dinâmica Molecular , Percepção de Quorum , Estrutura Molecular , Lactonas
2.
Plant Phenomics ; 5: 0125, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38076280

RESUMO

Salt stress is considered one of the primary threats to cotton production. Although cotton is found to have reasonable salt tolerance, it is sensitive to salt stress during the seedling stage. This research aimed to propose an effective method for rapidly detecting salt stress of cotton seedlings using multicolor fluorescence-multispectral reflectance imaging coupled with deep learning. A prototyping platform that can obtain multicolor fluorescence and multispectral reflectance images synchronously was developed to get different characteristics of each cotton seedling. The experiments revealed that salt stress harmed cotton seedlings with an increase in malondialdehyde and a decrease in chlorophyll content, superoxide dismutase, and catalase after 17 days of salt stress. The Relief algorithm and principal component analysis were introduced to reduce data dimension with the first 9 principal component images (PC1 to PC9) accounting for 95.2% of the original variations. An optimized EfficientNet-B2 (EfficientNet-OB2), purposely used for a fixed resource budget, was established to detect salt stress by optimizing a proportional number of convolution kernels assigned to the first convolution according to the corresponding contributions of PC1 to PC9 images. EfficientNet-OB2 achieved an accuracy of 84.80%, 91.18%, and 95.10% for 5, 10, and 17 days of salt stress, respectively, which outperformed EfficientNet-B2 and EfficientNet-OB4 with higher training speed and fewer parameters. The results demonstrate the potential of combining multicolor fluorescence-multispectral reflectance imaging with the deep learning model EfficientNet-OB2 for salt stress detection of cotton at the seedling stage, which can be further deployed in mobile platforms for high-throughput screening in the field.

3.
Front Plant Sci ; 14: 1260625, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38126009

RESUMO

In the production of edible fungi, the use of degraded strains in cultivation incurs significant economic losses. Based on micro-hyperspectral imaging and machine learning, this study proposes an early, nondestructive method for detecting different degradation degrees of Pleurotus geesteranus strains. In this study, an undegraded strain and three different degradation-level strains were used. During the mycelium growth, 600 micro-hyperspectral images were obtained. Based on the average transmittance spectra of the region of interest (ROI) in the range of 400-1000 nm and images at feature bands, feature spectra and images were extracted using the successive projections algorithm (SPA) and the deep residual network (ResNet50), respectively. Different feature input combinations were utilized to establish support vector machine (SVM) classification models. Based on the results, the spectra-input-based model performed better than the image-input-based model, and feature extraction improved the classification results for both models. The feature-fusion-based SPA+ResNet50-SVM model was the best; the accuracy rate of the test set was up to 90.8%, which was better than the accuracy rates of SPA-SVM (83.3%) and ResNet50-SVM (80.8%). This study proposes a nondestructive method to detect the degradation of Pleurotus geesteranus strains, which could further inspire new methods for the phenotypic identification of edible fungi.

4.
Plants (Basel) ; 12(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37960032

RESUMO

Rice blast has caused major production losses in rice, and thus the early detection of rice blast plays a crucial role in global food security. In this study, a semi-supervised contrastive unpaired translation iterative network is specifically designed based on unmanned aerial vehicle (UAV) images for rice blast detection. It incorporates multiple critic contrastive unpaired translation networks to generate fake images with different disease levels through an iterative process of data augmentation. These generated fake images, along with real images, are then used to establish a detection network called RiceBlastYolo. Notably, the RiceBlastYolo model integrates an improved fpn and a general soft labeling approach. The results show that the detection precision of RiceBlastYolo is 99.51% under intersection over union (IOU0.5) conditions and the average precision is 98.75% under IOU0.5-0.9 conditions. The precision and recall rates are respectively 98.23% and 99.99%, which are higher than those of common detection models (YOLO, YOLACT, YOLACT++, Mask R-CNN, and Faster R-CNN). Additionally, external data also verified the ability of the model. The findings demonstrate that our proposed model can accurately identify rice blast under field-scale conditions.

5.
Plants (Basel) ; 12(19)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37836123

RESUMO

Deep learning networks might require re-training for different datasets, consuming significant manual labeling and training time. Transfer learning uses little new data and training time to enable pre-trained network segmentation in relevant scenarios (e.g., different vegetation images in rainy and dry seasons); however, existing transfer learning methods lack systematicity and controllability. So, an MTPI method (Maximum Transfer Potential Index method) was proposed to find the optimal conditions in data and feature quantity for transfer learning (MTPI conditions) in this study. The four pre-trained deep networks (Seg-Net (Semantic Segmentation Networks), FCN (Fully Convolutional Networks), Mobile net v2, and Res-Net 50 (Residual Network)) using the rainy season dataset showed that Res-Net 50 had the best accuracy with 93.58% and an WIoU (weight Intersection over Union) of 88.14%, most worthy to transfer training in vegetation segmentation. By obtaining each layer's TPI performance (Transfer Potential Index) of the pre-trained Res-Net 50, the MTPI method results show that the 1000-TDS and 37-TP were estimated as the best training speed with the smallest dataset and a small error risk. The MTPI transfer learning results show 91.56% accuracy and 84.86% WIoU with 90% new dataset reduction and 90% iteration reduction, which is informative for deep networks in segmentation tasks between complex vegetation scenes.

6.
Plants (Basel) ; 12(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37111921

RESUMO

Non-destructive plant stress phenotyping begins with traditional one-dimensional (1D) spectroscopy, followed by two-dimensional (2D) imaging, three-dimensional (3D) or even temporal-three-dimensional (T-3D), spectral-three-dimensional (S-3D), and temporal-spectral-three-dimensional (TS-3D) phenotyping, all of which are aimed at observing subtle changes in plants under stress. However, a comprehensive review that covers all these dimensional types of phenotyping, ordered in a spatial arrangement from 1D to 3D, as well as temporal and spectral dimensions, is lacking. In this review, we look back to the development of data-acquiring techniques for various dimensions of plant stress phenotyping (1D spectroscopy, 2D imaging, 3D phenotyping), as well as their corresponding data-analyzing pipelines (mathematical analysis, machine learning, or deep learning), and look forward to the trends and challenges of high-performance multi-dimension (integrated spatial, temporal, and spectral) phenotyping demands. We hope this article can serve as a reference for implementing various dimensions of non-destructive plant stress phenotyping.

7.
Plant Sci ; 330: 111660, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36822504

RESUMO

The planting of salt-tolerant plants is regarded as the one of important measurements to improve the saline-alkali lands. The outstanding biological properties of JUNCAOs have made them candidates to improve and utilize saline-alkali lands. At present, little attention has been paid to developing a non-destructive and high throughput approach to evaluate the salt tolerance of JUNCAO. To close the gaps, three typical JUNCAOs (A.donax. No.1, A.donax. No.5 and A.donax. No.10) were evaluated by combining prompt chlorophyll a fluorescence (ChlF) with hyperspectral spectroscopy (HS). The results showed that salt stress reduced relative stem growth, water content, and total chlorophyll content but enhanced the malondialdehyde (MDA) content. It caused a significant change in chlorophyll a fluorescence kinetics with an appearance of L-, K- and J-band, implying damaging energetic connectivity between PSII units, uncoupling of the oxygen evolving complex (OEC) and inhibition of the QA-reoxidation. The negative impact of salt stress on JUNCAOs increased with the increasing level of salt concentration. Effect on spectral reflectance in the in the visible region with shifts on red edge position (REP) and blue edge position (BEP) to shorter wavelength was also found in salt stress plants. Combining principal component analysis (PCA) with the membership function method based on spectral indices and JIP-test parameters could well screen JUNCAOs salt tolerant ability with the highest for A.donax. NO.10 but lowest for A.donax. NO.1, which was the same as that of using conventional approach. The results demonstrate that prompt ChlF coupling with HS could provide potentials for non-invasively and high-throughput phenotyping salt tolerance in JUNCAOs.


Assuntos
Clorofila , Tolerância ao Sal , Clorofila A , Fluorescência , Clorofila/análise , Estresse Salino , Análise Espectral
8.
Anal Bioanal Chem ; 414(23): 6881-6897, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35947156

RESUMO

Citrus Huanglongbing (HLB) is nowadays one of the most fatal citrus diseases worldwide. Once the citrus tree is infected by the HLB disease, the biochemistry of the phloem region in midribs would change. In order to investigate the carbohydrate changes in phloem region of citrus midrib, the semi-quantification models were established to predict the carbohydrate concentration in it based on Fourier transform infrared microscopy (micro-FTIR) spectroscopy coupled with chemometrics. Healthy, asymptomatic-HLB, symptomatic-HLB, and nutrient-deficient citrus midribs were collected in this study. The results showed that the intensity of the characteristic peak varied with the carbohydrate (starch and soluble sugar) concentration in citrus midrib, especially at the fingerprint regions of 1175-900 cm-1, 1500-1175 cm-1, and 1800-1500 cm-1. Furthermore, semi-quantitative prediction models of starch and soluble sugar were established using the full micro-FTIR spectra and selected characteristic wavebands. The least squares support vector machine regression (LS-SVR) model combined with the random frog (RF) algorithm achieved the best prediction result with the determination coefficient of prediction ([Formula: see text]) of 0.85, the root mean square error of prediction (RMSEP) of 0.36%, residual predictive deviation (RPD) of 2.54, and [Formula: see text] of 0.87, RMSEP of 0.37%, RPD of 2.76, for starch and soluble sugar concentration prediction, respectively. In addition, multi-layer perceptron (MLP) classification models were established to identify HLB disease, achieving the overall classification accuracy of 94% and 87%, based on the full-range spectra and the optimal wavenumbers selected by the random frog (RF) algorithm, respectively. The results demonstrated that micro-FTIR spectroscopy can be a valuable tool for the prediction of carbohydrate concentration in citrus midribs and the detection of HLB disease, which would provide useful guidelines to detect citrus HLB disease.


Assuntos
Citrus , Carboidratos/análise , Citrus/química , Doenças das Plantas , Folhas de Planta/química , Espectroscopia de Infravermelho com Transformada de Fourier , Amido/análise , Açúcares/análise
9.
Front Plant Sci ; 13: 846484, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35519809

RESUMO

The objective of the present study was to characterize the temporal and spatial variation of biopolymers in cells infected by the tea leaf blight using confocal Raman microspectroscopy. We investigated the biopolymers on serial sections of the infection part, and four sections corresponding to different stages of infection were obtained for analysis. Raman spectra extracted from four selected regions (circumscribing the vascular bundle) were analyzed in detail to enable a semi-quantitative comparison of biopolymers on a micron-scale. As the infection progressed, lignin and other phenolic compounds decreased in the vascular bundle, while they increased in both the walls of the bundle sheath cells as well as their intracellular components. The amount of cellulose and other polysaccharides increased in all parts as the infection developed. The variations in the content of lignin and cellulose in different tissues of an individual plant may be part of the reason for the plant's disease resistance. Through wavelet-based data mining, two-dimensional chemical images of lignin, cellulose and all biopolymers were quantified by integrating the characteristic spectral bands ranging from 1,589 to 1,607 cm-1, 1,087 to 1,100 cm-1, and 2,980 to 2,995 cm-1, respectively. The chemical images were consistent with the results of the semi-quantitative analysis, which indicated that the distribution of lignin in vascular bundle became irregular in sections with severe infection, and a substantial quantity of lignin was detected in the cell wall and inside the bundle sheath cell. In serious infected sections, cellulose was accumulated in vascular bundles and distributed within bundle sheath cells. In addition, the distribution of all biopolymers showed that there was a tylose substance produced within the vascular bundles to prevent the further development of pathogens. Therefore, confocal Raman microspectroscopy can be used as a powerful approach for investigating the temporal and spatial variation of biopolymers within cells. Through this method, we can gain knowledge about a plant's defense mechanisms against fungal pathogens.

10.
ACS Appl Mater Interfaces ; 13(37): 44568-44576, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34514792

RESUMO

Ga2O3 is a popular material for research on solar-blind ultraviolet detectors. However, its absorption cutoff edge is 253 nm, which is not an ideal cutoff edge of 280 nm. In this work, by adjusting the ratio of In/Ga elements in the films, a high-quality (In0.11Ga0.89)2O3 film with an absorption cutoff edge of 280 nm was obtained, which owns a uniform surface and preferred orientation. On this basis, a solar-blind ultraviolet photovoltaic detector was constructed based on the Pt/(In0.11Ga0.89)2O3/n-Si heterojunction. When the device is exposed to 254 nm UV light, its open-circuit voltage (VOC) can reach 354 mV. Under 0 V bias, the device has a responsivity of 0.48 mA/W with a rise time of 0.47 s and a decay time of 0.37 s; under -7 V bias, the device achieves a responsivity of 16.96 mA/W with a rise time of 0.17 s and a decay time of 0.33 s. The spectral response characteristics of the device show that it has a selective response to solar-blind ultraviolet light (cutoff wavelength is 280 nm) with a rejection ratio (R254 nm/R310 nm), which is greater by more than two orders of magnitude. This work provides a good reference for adjusting the band gap of Ga2O3-based films and broadening their application fields.

11.
Sensors (Basel) ; 20(4)2020 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-32098377

RESUMO

Spectral imaging is a promising technique for detecting the quality of rice seeds. However, the high cost of the system has limited it to more practical applications. The study was aimed to develop a low-cost narrow band multispectral imaging system for detecting rice false smut (RFS) in rice seeds. Two different cultivars of rice seeds were artificially inoculated with RFS. Results have demonstrated that spectral features at 460, 520, 660, 740, 850, and 940 nm were well linked to the RFS. It achieved an overall accuracy of 98.7% with a false negative rate of 3.2% for Zheliang, and 91.4% with 6.7% for Xiushui, respectively, using the least squares-support vector machine. Moreover, the robustness of the model was validated through transferring the model of Zheliang to Xiushui with the overall accuracy of 90.3% and false negative rate of 7.8%. These results demonstrate the feasibility of the developed system for RFS identification with a low detecting cost.


Assuntos
Oryza/fisiologia , Sementes/fisiologia , Análise dos Mínimos Quadrados , Máquina de Vetores de Suporte
12.
Molecules ; 24(7)2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30934979

RESUMO

The activities of enzymes are the basis of evaluating the quality of honey. Beekeepers usually use concentrators to process natural honey into concentrated honey by concentrating it under high temperatures. Active enzymes are very sensitive to high temperatures and will lose their activity when they exceed a certain temperature. The objective of this work is to study the kinetic mechanism of the temperature effect on diastase activity and to develop a nondestructive approach for quick determination of the diastase activity of honey through a heating process based on visible and near-infrared (Vis/NIR) spectroscopy. A total of 110 samples, including three species of botanical origin, were used for this study. To explore the kinetic mechanism of diastase activity under high temperatures, the honey of three kinds of botanical origins were processed with thermal treatment to obtain a variety of diastase activity. Diastase activity represented with diastase number (DN) was measured according to the national standard method. The results showed that the diastase activity decreased with the increase of temperature and heating time, and the sensitivity of acacia and longan to temperature was higher than linen. The optimum temperature for production and processing is 60 °C. Unsupervised clustering analysis was adopted to detect spectral characteristics of these honeys, indicating that different botanical origins of honeys can be distinguished in principal component spaces. Partial least squares (PLS) and least squares-support vector machine (LS-SVM) algorithms were applied to develop quantitative relationships between Vis/NIR spectroscopy and diastase activity. The best result was obtained through Gaussian filter smoothing-standard normal variate (GF-SNV) pretreatment and the LS-SVM model, known as GF-SNV-LS-SVM, with a determination coefficient (R²) of prediction of 0.8872, and root mean square error (RMSE) of prediction of 0.2129. The overall results of this paper showed that the diastase activity of honey can be determined quickly and non-destructively with Vis/NIR spectral methods, which can be used to detect DN in the process of honey production and processing, and to maximize the nutrient content of honey.


Assuntos
Amilases/química , Mel/análise , Espectroscopia de Luz Próxima ao Infravermelho , Ativação Enzimática , Cinética , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Análise Espectral , Temperatura
13.
Food Chem ; 270: 236-242, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30174040

RESUMO

Lipid-soluble pigments make great contributions to the color of green tea. This study aimed to rapidly and simultaneously measure six main types of lipid-soluble pigments in green tea by using the visible and near-infrared (Vis-NIR) spectroscopy. A total of 135 tea samples with five kinds and three grades were collected for spectral scanning and color measurement, and their lipid-soluble pigments contents were measured by high performance liquid chromatography. It can be found that tea color was closely related to the six pigments. And there were significant differences in lipid-soluble pigments contents among these kinds and grades. Finally, quantitative determination models of the six pigments obtained excellent results with Rp2 of 0.975, 0.973, 0.993, 0.919, 0.962 and 0.965 respectively based on multiple linear regression with the characteristic wavelengths. These results demonstrated that the Vis-NIR spectroscopy combined with chemometrics is a powerful tool for rapid determination of lipid-soluble pigments in green tea.


Assuntos
Espectroscopia de Luz Próxima ao Infravermelho/métodos , Chá/química , Cor , Análise Multivariada
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...